اردني انجلش
اهلا و سهلا بكم في منتداكم و كل عام و انتم بالف خير



الرئيسيةس .و .جبحـثقائمة الاعضاءالمجموعاتالتسجيلدخول

أهلا وسهلا بك اردني انجلش.
أهلا وسهلا بك زائرنا الكريم، إذا كانت هذه زيارتك الأولى للمنتدى، فيرجى التكرم بزيارة صفحة التعليمـــات، بالضغط هنا.كما يشرفنا أن تقوم بالتسجيل بالضغط هنا إذا رغبت بالمشاركة في المنتدى، أما إذا رغبت بقراءة المواضيع والإطلاع فتفضل بزيارة القسم الذي ترغب أدناه.




 

اردني انجلش :: التعليم العام :: التعليم العام :: اوراق عمل لباقي المواد

شاطر
السبت 18 يونيو 2011 - 15:26
المشاركة رقم: #
المعلومات
الكاتب:
اللقب:
مؤسسين الشبكة
الرتبه:
مؤسسين الشبكة
الصورة الرمزية


البيانات
انثى
عدد المساهمات : 7166
نقاط : 23070
السٌّمعَة : 59
تاريخ التسجيل : 11/01/2011
الموقع : Jordan
تعاليق : TO BE OR NOT TO BE THAT``S THE QUESTION
التوقيت

الإتصالات
الحالة:
وسائل الإتصال:
معاينة صفحة البيانات الشخصي للعضو http://jordan-english.yoo7.com


مُساهمةموضوع: الاقتران التربيعي



الاقتران التربيعي

حل معادلات الدرجة الثانية في متغير واحد بطريقة إكمال المربع


الصورة العامة لها هي : أ س^2 + ب س + ج = صفر

خطوات الحل

أولاً : نجعل الحد الثابت ( المطلق) في طرف والمتغيرات في الطرف الأخر


ثانياً :نجعل معامل س^ = 1 وذلك بالقسمة عليه


ثالثاً : نضيف مربع نضيف معامل س للطرفين


رابعاً : نحلل الطرف الأيمن كمقدار ثلاثي مربع كامل على صورة ( س + ثابت ) ^2


خامساً : نأخذ الجدر التربيعي للطرفين فينتج لنا معادلتان .


سادساً : نكمل حل المعادلتين كلاً على حده فنحصل على حلين


مثال (1) جد حل المعادلة التالية بطريقة إكمال المربع2س^2 + 4س – 16 = صفر


بإضافة + 16 للطرفين2س^2 + 4س = 16


بالقسمة على معامل س^2 وهو 2 س^2 + 2س = 8


معامل س = 2 نصفه =1 مربعه =1

بإضافة 1 للطرفين س^2 + 2س + 1= 8 + 1

نكتب الطرف الأيمن على صورة ( س + ب )^2 ( س + 1 )^2 = 9


بأخذ الجذر التربيعي للطرفين ينتج لنا معادلتان


هما ( س + 1 )^2 = 9 س + 1 = 3


بإضافة -1 للطرفين س = 2 أو س + 1 = -3


بإضافة -1 للطرفين س = -4 مجموعة الحل : { 2 ، -4}


مثال (2) جد حل المعادلة التالية بطريقة إكمال المربع س^2 - 8س + 15 = صفر


بإضافة -15 للطرفينس^2 - 8س = -15


معامل س = -8 نصفه = -4 مربعه = 16 س^2 - 8س + 16 = -15 + 16

نكتب الطرف الأيمن على صورة ( س + ب )^2 ( س - 4 )^2 = -15 + 16 ( س - 4 )^2 = 1
بأخذ الجذر التربيعي للطرفين ينتج لنا معادلتان هما


س – 4 = 1 بإضافة +4 للطرفين س = 5 أو س – 4 = - 1


بإضافة +4 للطرفين س = 3 مجموعة الحل = { 5 ، 3 }



مثال (3) جد حل المعادلة التالية بطريقة إكمال المربع س^2 - 4س = 12

معامل س = -4 نصفه = -2 مربعه = 4

س^2 - 4س + 4 = 12 + 4

نكتب الطرف الأيمن على صورة ( س + ب )^2 ( س - 2 )^2 = 12 + 4( س - 2 )^2 = 16

بأخذ الجذر التربيعي للطرفين ينتج لنا معادلتان هما
س - 2 = 4 بإضافة + 2 للطرفين س = 6

أو س - 2 = -4 بإضافة + 2 للطرفين س = -2

مجموعة الحل = { 6 ، -2 }

تطبيق : جد حل المعادلة التالية بطريقة إكمال المربع 4س^2 - 16س + 12 = صفر

بإضافة - 12 للطرفين4س^2 - 16س = -12
بالقسمة على معامل س2 وهو 4 س^2 - 4س = -3
معامل س = -4 نصفه = -2 مربعه = 4

س^2 - 4س + 4 = -3 + 4
نكتب الطرف الأيمن على صورة ( س + ب )^2 ( س - 2 )^2 = 1

بأخذ الجذر التربيعي للطرفين ينتج لنا معادلتان هما
س - 2 = 1 بإضافة + 2 للطرفين س = 3
أو س - 2 = -1 بإضافة + 2 للطرفين س = 1

مجموعة الحل = { 3 ، 1 }


تطبيق : جد حل المعادلة التالية بطريقة إكمال المربع
3س^2 + 12س + 12 = صفر
بإضافة - 12 للطرفين3س^2 + 12س = -12
بالقسمة على معامل س2 وهو 3 س^2 + 4س = -4
معامل س = 4 نصفه = 2 مربعه = 4
س^2 + 4س + 4 = -4 + 4
نكتب الطرف الأيمن على صورة ( س + ب )^2 ( س + 2 )^2 = صفر

بأخذ الجذر التربيعي للطرفين ينتج لنا معادلتان هما

س + 2 = صفر بإضافة + 2 للطرفين س = -2

مجموعة الحل = { -2 }

ملاحظة :
المعادلة السابقة لها حلان متشابهان هما -2 و –2ويكتفى بكتابة حل واحد فقط . ( لماذا ؟ )

تطبيق :
جد حل المعادلة التالية بطريقة إكمال المربع2س^2 - 12س + 20 = صفر

بإضافة - 20 للطرفين2س^2 - 12س = -20
بالقسمة على معامل س2 وهو 2 س^2 - 6س = -10

معامل س = -6 نصفه = -3 مربعه = 9

س^2 - 6س + 9 = -10 + 9

نكتب الطرف الأيمن على صورة ( س + ب )^2 ( س - 3 )^2 = -1


بأخذ الجذر التربيعي للطرفين ينتج لنا أن المعادلة مستحيلة الحل



شرح آخر :

* الصّورة العامّة للاقتران التربيعي:



قطع مكافئ... يلزمني لأرسمه رسماً تقريبياً:
معرفة إحداثيات نقطة الرأس، وهل فتحة القطع لأعلى أم لأسفل.

1- الإحداث السّيني لنقطة الرأس =

2- بعد أن أجد قيمة س نقطة الرأس أعوّضها في المعادلة المُعطاة؛ فأجد ص نقطة الرأس.

3- أعيّن نقطة الرأس الناتجة معي على المستوى الديكارتي.

4- أنظر إلى أ في المعادلة المُعطاة؛ فإذا كانت موجبة أجعل فتحة القطع لأعلى، وإذا كانت سالبة تكون فتحة القطع لأسفل.



جرّب أن تجد بنفسك إحداثيات نقطة الرأس، واتجاه فتحة القطع... من المُعادلة.

** علينا معرفة ما يلي جيّداً:

! - يكون لكل قطع مكافئ نقطة تقسم منحناه إلى نصفين متماثلين وتسمى هذه النقطة رأس القطع، الإحداث السّيني لها هو: س = وأجد الإحداث الصّادي لها بتعويض س في المعادلة المعطاة.

ب - ينتهي محور تماثل القطع المكافئ في نقطة رأسه لذلك نسمّيها نقطة نهاية
عظمى (إذا كانت فتحة القطع لأسفل - كالجبل) أو صغرى (إذا كانت فتحة القطع
لأعلى - كالقاع).

أ - يوجد لكل قطع مكافئ محور تماثل يقسمه إلى نصفين متماثلين؛ معادلته: س = وإن كانت إحداثيات نقطة الرّأس معلومة نأخذ س نقطة الرّأس. س=س نقطة الرّأس.

د- لأجد نقاط تقاطع الاقتران مع محور الصّادات أعوّض س = صفر في المعادلة المُعطاة.

هـ- حلول، أو أصفار، أو جذور المعادلة (الاقتران) هي نقاط تقاطع القطع المكافىء مع محور السّينات (ص = صفر)
فإذا كان المميّز موجب نقول أنّ للاقتران جذران مختلفان أي أنّه يقطع محور
السّينات في نقطتين، وإذا كان المميّز صفراً يكون للاقتران جذران متساويان
(تجاوزاً نقول: جذر واحد) أي أنّه يقطع محور السّينات في نقطة واحدة هي
نقطة الرأس، أي أنّ قيمة الجذر =
وهي الإحداث السّيني لنقطة الرأس، وإذا كان المميّز سالباً نقول أنه لا
يوجد جذور حقيقيّة للاقتران وبيانياً لا يقطع الاقتران محور السّينات.

تدريب:

أستخرج من الرّسوم التالية:

1- نقاط التقاطع مع محور ص
2- نقاط التقاطع مع محور س
3- إحداثيات نقطة الرأس.
4- معادلة محور التماثل








و- ليكون التمثيل البياني أكثر دقة أفترض نقاطاً سينيّة على يمين ويسار الإحداث السّيني لنقطة الرّأس وأعوّضها في المعادلة المعطاة لأجد ص لها، ثمّ أعيّن الأزواج المرتبة الناتجة من الفرض والتعويض على المستوى الديكارتي وأصل بينها جميعاً. أمثلة بالرّسم:








الموضوعالأصلي : الاقتران التربيعي // المصدر : اردني انجلش // الكاتب: GNASSORA



توقيع : GNASSORA









الإشارات المرجعية

التعليق على الموضوع بواسطة الفيس بوك

الــرد الســـريـع
..





تعليمات المشاركة
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة